
THE MACROLOGICAL FASCICLE

Editor’s introduction to this fascicle
Note: This introduction will not appear in the final report.

Lisp was the first language to incorporate macros operating on the syntax tree of
a program, rather than the text of its source code; Scheme was the first language
to add automatic hygiene to such a system. This first fascicle in the development
of the seventh revision of the report on Scheme therefore builds on six decades of
research and innovation in which Scheme and its predecessors have played an ac‐
tive role throughout. Indeed, the new features added to macros in this fascicle
were all pioneered in implementations of Scheme.

Hygienic macros were first mentioned in a Scheme report in an optional appendix
to the R4RS. Compared to R4RS, the macro system defined by this fascicle adds
only what might be called refinements of the original concept:

a library-based system of multiple phases of evaluation and expansion makes
it possible to use one’s own helper procedures in the definition of macro trans‐
formers (added in R6RS, extended by this report);

the high-level syntax-rules system has been unified with the low-level ma‐
nipulation of syntax objects by the introduction of the syntax-case system,
which makes pattern variables accessible as bindings within Scheme code
(added in R6RS);

macro uses can be uses of identifiers outside the operator position of a combi‐
nation, like variable names (added in R6RS);

the high-level pattern matching system used by both syntax-rules and
syntax-case can match some more types of patterns that were unavailable in
R4RS (added in R6RS and R7RS small);

identifiers may have properties associated with them, which allows macros to
pass around additional information associated with identifiers to one another
during expansion (added in this report);

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 1/6

syntax parameters allow certain types of seemingly unhygienic macro to be
implemented without actually breaking hygiene (added in this report).

The R6RS divided its treatment of macros between the main report (which
treated the high-level syntax-rules system and the binding of syntax keywords
to transformers) and the report on standard libraries (which actually defined
what a transformer is, as well as syntax objects and syntax-case). Neither docu‐
ment contained a complete explanation of the core semantics of macros and ex‐
pansion alone. In contrast, since the R7RS volume on standard libraries (inter‐
nally called Batteries) is intended to be entirely implementable in terms of the
Foundations, this fascicle explains the entire macro system of R7RS Large. The
standard libraries report of R6RS also presented the syntax-case system as a
high-level system, without providing enough lower-level features to allow it to be
implemented as a user library; this fascicle, however, contains sufficient primi‐
tives in the sections on syntax objects and syntax transformation to allow the
syntax-case form to be implemented as derived syntax. Therefore, it is perhaps
better not to speak of the R7RS macro system as being based on syntax-case as
R6RS’s was, but rather based on syntax objects, as the low-level system in the ap‐
pendix to the R4RS was.

Since extensions to Scheme macros beyond the syntax-rules system provided by
the small language have been among the most controversial proposals made for
changes in the Scheme language in the last two decades, I hope this fascicle will
address these controversies by showing how the popular syntax-rules system is
built up, from a theoretical hygiene model, through an implementation of the
model on syntax objects processed by transformer procedures; and how finally,
with the addition of the pattern matcher from syntax-rules, a specification of
the entire syntax-case system is reached, with syntax-rules itself being a triv‐
ial transformation thereof. The tools provided in the first three chapters of this
fascicle are sufficient to implement the high-level systems of R5RS and R6RS
specified in chapters 4 and 5. A sample implementation which demonstrates this
will be provided in due course.

What implementations need to do to support this fascicle

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 2/6

Implementations which do not support syntax-case as specified by the R6RS will
need to adopt it, either by completely replacing their expanders or by adapting
their existing ones. Experience from implementations which have already made
the switch shows that the former is generally the easier approach in practice. A
non-normative appendix to this fascicle shows how macros written for the explicit
renaming system, the most common low-level implementation of macros besides
syntax-case, can be accommodated by expanders written for syntax-case; alter‐
natively, van Tonder (2006) implements a version of the syntax-case system
which includes native support for a similar version of explicit renaming to that
shown in the appendix.

This fascicle deprecates the R6RS’s provisions for explicit phasing.
Implementations which use explicit phasing and restrict all identifier bindings to
the phase at which they were created will need to switch to implicit phasing (ig‐
noring the phase declarations on imports specified by the R6RS) and allow uses of
syntax defined in previous phases.

Compared to the versions of syntax-case and syntax-rules in the R6RS, this
fascicle allows renaming the ellipsis (section 4.5) as well as using the ellipsis and
underscore as pattern literals, as in the small language report’s syntax-rules.
Existing implementations of the pattern matcher will need to be extended to sup‐
port these features.

This fascicle further extends the R6RS macro system with the addition of lexi‐
cally-scoped identifier properties (section 2.5) and syntax parameters
(section 2.3), both of which require support from the expander.

This fascicle also adds a number of procedures and syntax forms from the R4RS
low-level macro system for which the R6RS offered no equivalent, including
quote-syntax (equivalent to R6RS’s syntax without pattern variable substitu‐
tion). Some of these can be implemented portably in terms of the R6RS higher-
level constructs.

The final division of the R7RS Large Foundations into libraries will be decided at
a later stage. The library name (r7rs-drafts macro-fascicle) is assigned to a
temporary library containing all bindings specified in this fascicle, intended for

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 3/6

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-VanTonder06
https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html#writing-macros-which-generate-other-macros
https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#identifier-properties
https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#syntax-parameters

experiments only. These bindings may change incompatibly if this fascicle is up‐
dated before the final report is issued. Production code should not depend on this
library, and implementations should not support it any more once the final R7RS
Large specification is ratified.

Changes in this fascicle compared to the source texts

The main source for the contents of this fascicle is the Yellow Ballot on macros
and syntactic constructs held between October 2021 and February 2022 under the
chairship of John Cowan. That ballot resulted in the adoption into R7RS Large of
the R6RS Standard Libraries chapter on syntax-case, the R6RS identifier-
syntax transformer specifier, and the SRFIs 139 (syntax parameters), 188
(splicing-let-syntax and splicing-letrec-syntax), and 213 (identifier prop‐
erties), besides a number of other proposals which will be incorporated into future
fascicles.

Compared to R7RS small and the source documents adopted under the Yellow
Ballot, the following substantive changes and additions have been made:

The R6RS hygiene model is expressed in different terms and in more detail.

Low-level procedures and syntax forms originally from the R4RS appendix
have been added to address criticism that, in R6RS, the high-level syntax-
case pattern matcher offered the only tool to destructure syntax objects.
Using these forms together with identifier properties, syntax-case itself can
be implemented as derived syntax. In addition, the predicate symbolic-
identifier=? from the R6RS examples is defined, because it is part of the
operation of R7RS small cond-expand.

The behaviour of identifier properties has been nearly completely respecified
to be more explicit about how properties are attached to identifiers under ex‐
port, import, and shadowing. The new specification matches the behaviour of
existing implementations.

An identifier-defined? procedure allows detecting whether a particular
identifier is bound. Among other uses, this makes identifier properties more
ergonomic to use in some cases, and allows macro transformers to report

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 4/6

more useful error messages when they operate on an identifier passed to
them which is supposed to already be bound.

The R6RS provisions for explicit phasing have been dropped because they
proved unpopular with implementers and users alike. The behaviour of im‐
plicit phasing with regards to the evaluation contexts of macro transformers
and the visibility of identifiers in different phases is specified. A future fasci‐
cle on the library system will complete the definition of implicit phasing and
mark the syntactic provision of the R6RS for explicit phasing as deprecated.

The expansion process defined by R6RS has been adapted for the new macro
features in this fascicle. The current draft also shows what the expansion
process would look like if mixing definitions and expressions in any order in
any body were allowed, but a final decision on this has not yet been made. In
the event this change is not made to bodies other than program and library
bodies, reverting to the old semantics is a relatively small revision to this
part of the text.

It has been explicitly specified that, although syntax-case and syntax-rules
use free-identifier=? to find instances of literals within their input forms,
they use bound-identifier=? to find literals within patterns. This reflects
the consensus of the Scheme community and the current practice of imple‐
mentations, following difficulties with advanced macro-defining macros when
free-identifier=? is used for both purposes (Clinger and Wand 2020, sec.
14.2, though note that they incorrectly refer to matching pattern literals in
uses, rather than within patterns).

The rules for when syntax objects are wrapped vs. unwrapped as a result of
evaluating a syntax expression have been changed to more accurately reflect
both the intention of the original R6RS authors (expressed in SRFI 93 but
omitted from the final R6RS document) and what existing implementations
actually do. (E.g. under the letter of the rules according to R6RS, an expres‐
sion such as #'(x ...) was not actually guaranteed to evaluate to a proper
list.)

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 5/6

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-ClingerAndWand20
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-ClingerAndWand20

The form custom-ellipsis has been added, allowing the ellipsis renaming
feature of R7RS small syntax-rules to be implemented in terms of syntax-
case.

syntax-rules is now specified mostly in terms of the semantics of syntax-
case and syntax. In particular, syntax templates inherit the R6RS feature of
allowing multiple ellipses after a single pattern variable, already a common
extension to the syntax-rules system of R7RS small.

A new declarative form erroneous-syntax allows more concisely defining
macros which always signal an error when expanded. Syntax keywords with
this property are expected to be increasingly common for use as syntax pa‐
rameters and as the keys of identifier properties, besides their existing uses
as auxiliary syntax keywords.

The R6RS condition system has also been implicitly adopted, following informal
consensus of WG2 members.

10/6/24, 1:09 PM The Macrological Fascicle: Editor’s introduction to this fascicle

https://r7rs.org/large/fascicles/macro/1/editors-intro.html 6/6

THE MACROLOGICAL FASCICLE

Editorial conventions
The phrase ‘it is an error’ as traditionally used in Scheme reports has been re‐
tired in this fascicle. In its place we have adopted a three-way distinction between
requirements on implementations, which should be familiar from the specifica‐
tions of other languages including Common Lisp and C.

‘Undefined’ behaviour (and similar phrases such as ‘the behaviour is unde‐
fined …’) is the direct equivalent of ‘it is an error’ in the R7RS small and
R6RS language reports. An implementation is allowed to behave in any way
at all if instructed to evaluate code with undefined behaviour; however, imple‐
menters should be aware of the R6RS guarantee of ‘safety’, a version of which
is expected to be applied to the libraries defined by the R7RS large language
reports, including to situations which involve undefined behaviour.

‘Unspecified’ behaviour refers to situations in which the report allows imple‐
mentations to choose one of a number of behaviours explicitly allowed by the
report. Implementations are not required to choose the same option in all cir‐
cumstances, nor are they required to document their choice.

‘Implementation-specified’ behaviour refers to situations in which the report
allows implementations to choose between possible behaviours, but does re‐
quire conforming implementations to document which behaviour they use.

As in the R7RS small language report, the phrase ‘an error is signalled’ continues
to refer to a situation in which an exception is required to be raised.

The R7RS Large Foundations will incorporate a revised version of the R6RS con‐
dition types which is compatible with the error objects defined by the small lan‐
guage report, but this is not yet specified and will be included in a future fascicle.
However, the phrase ‘it is a syntax violation’ or ‘a syntax violation is signalled’
means that an exception is raised with condition type &syntax as in the R6RS.

The phrase ‘domain error’ (or ‘it is a domain error’) refers to using a procedure
with an argument value which is outside the specified range of possible values for

10/6/24, 1:10 PM The Macrological Fascicle: Editorial conventions

https://r7rs.org/large/fascicles/macro/1/editorial-conventions.html 1/2

that argument. It is not yet specified what concrete action implementations
should take in this case in the R7RS Large Foundations. Preliminarily, implemen‐
tations are encouraged to signal an error with condition type &assertion as in
the R6RS, but this is not a requirement. The circumstances, if any, in which a do‐
main error is required to signal an error will likewise be established in a future
fascicle.

The following variable names are used in the specifications of procedures to imply
the type of the argument named by that variable:

Variable Type
id identifier
proc procedure
stx syntax object
symbol symbol

[Editorial note: Cross reference each entry in the right hand column to where that type is de‐

fined in the text, where possible.]

It is a domain error if an argument to any procedure does not match the expected
type, whether the expected type is implied by the use of a variable name listed in
this table, or named explicitly in the specification text.

The key words ‘must’, ‘must not’, ‘required’, ‘shall’, ‘shall not’, ‘should’, ‘should not’,
‘recommended’, ‘may’, and ‘optional’ in this document, although not capitalized in
this report, are to be interpreted as described in RFC 2119. (Bradner 1997)

Comments of the form ‘[Editorial note: ...]’ are editorial notes marking places re‐
quiring revision in the final report.

10/6/24, 1:10 PM The Macrological Fascicle: Editorial conventions

https://r7rs.org/large/fascicles/macro/1/editorial-conventions.html 2/2

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-RFC2119

THE MACROLOGICAL FASCICLE

CHAPTER 1

Macros and hygiene
Scheme programs and libraries can define and use new derived expression types,
called macros. Each instance of a macro is called a use of the macro. Macro uses
can take similar forms to any expression type defined in this report which is asso‐
ciated with a binding to an identifier.

Implementations of Scheme can evaluate such expression types because the defi‐
nition of a macro binds an identifier, which is called the keyword or syntax key‐
word and which uniquely determines the expression type, to a procedure written
in ordinary Scheme code which, when called with an argument representing the
form of a macro use, can analyse that macro use and transcribe it into a more
primitive expression. The Scheme implementation can then evaluate this new ex‐
pression, possibly after transcribing additional macro uses within it into yet more
primitive expressions. The procedures associated with macro definitions are
called transformers. The process of transcribing macro uses using transformers
within a program is called expansion, and the more primitive expression resulting
from calling the transformer on the form of a macro use is called the expansion of
that macro. The part of a Scheme implementation responsible for the process of
expansion is thus called the expander.

This report defines two closely-related high-level systems for writing transformers
(syntax-case and syntax-rules). Within these high-level systems, macros de‐
fined by the users are by default ‘hygienic’ and ‘referentially transparent’ and thus
preserve Scheme’s lexical scoping. (Kohlbecker 1986, Kohlbecker et al. 1986,
Bawden and Rees 1988, Clinger and Rees 1991, Dybvig, Hieb and Bruggeman
1992)

If a macro transformer inserts a binding for an identifier, the identifier will in
effect be renamed throughout its scope to avoid conflicts with other
identifiers.

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 1/6

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-Kohlbecker86
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-KohlbeckerEtAl86
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-BawdenAndRees88
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-ClingerAndRees91
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-DybvigEtAl92
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-DybvigEtAl92

If a macro transformer inserts a free reference to an identifier, the reference
refers to the binding that was visible where the transformer was specified, re‐
gardless of any local bindings that surround the use of the macro.

Besides these high-level systems, this report also defines a low-level mechanism
by which these properties are maintained, and which allows them to be deliber‐
ately broken in a controlled way. It is also possible to use these lower-level primi‐
tives within transformers which use the high-level syntax-case system, in order
to write macros which deliberately break these properties.

In order to both maintain these properties by default and allow them to be broken
when required, an implementation of Scheme contains a concrete implementation
of a theoretical model of hygiene, which allows it to keep track of when and where
an identifier was introduced, even if it is inserted elsewhere in a program by a
macro expansion.

1.1. Defining hygiene

Barendregt (1984)’s hygiene condition for the lambda calculus is an informal no‐
tion that requires the free variables of an expression 𝑁 that is to be substituted
into another expression 𝑀 not to be captured by bindings in 𝑀 when such capture
is not intended. Kohlbecker et al. (1986) propose a corresponding hygiene condi‐
tion for macro expansion that applies in all situations where capturing is not ex‐
plicit: ‘Generated identifiers that become binding instances in the completely ex‐
panded program must only bind variables that are generated at the same tran‐
scription step’. In the terminology of this report’s model of hygiene, the generated
identifiers are those introduced by a transformer rather than those present in the
form passed to the transformer, and a macro transcription step corresponds to a
single call by the expander to a transformer. Also, the hygiene condition applies to
all introduced bindings rather than to introduced variable bindings alone.

This leaves open what happens to an introduced identifier that appears outside
the scope of a binding introduced by the same call. Such an identifier refers to the
lexical binding in effect where it appears inside the transformer body or one of the
helpers it calls. This is essentially the referential transparency property described

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 2/6

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-Barendregt84
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-KohlbeckerEtAl86

by Clinger and Rees (1991). Thus, the hygiene condition can be restated as
follows:

A binding for an identifier introduced into the output of a transformer call
from the expander must capture only references to the identifier introduced
into the output of the same transformer call. A reference to an identifier in‐
troduced into the output of a transformer refers to the closest enclosing bind‐
ing for the introduced identifier or, if it appears outside of any enclosing bind‐
ing for the introduced identifier, the closest enclosing lexical binding where
the identifier appears inside the transformer body or one of the helpers it
calls.

Within the context of hygienic macro expansion, it is sometimes useful to write
macros which deliberately violate this condition, either by introducing bindings
for identifiers which capture the references of identifiers introduced outside of the
same transformer call, or by introducing identifiers which refer to bindings
present at the macro use site. Since uses of such non-hygienic macros may occur
within the output of transformer calls for other macros, the transformers for non-
hygienic macros must limit the extent of this capture to identifiers that were ei‐
ther introduced into the output of a specific transformer call, or which where in‐
troduced by and present in the original forms before expansion began. In other
words, identifiers introduced in this way must be treated as if they had been im‐
plicitly present in a form generated by some specific macro transcription step, or
in a form in the original source.

1.2. Modelling hygiene

Todo: Express the hygiene model in notation as well as in prose. (Needs a bet‐
ter markup system for the spec than the current mess.)

Note: This section describes a possible operational semantics of one theoretical model of hy‐

giene. Implementations are not required to adopt this exact model, as long as whichever

model they use repects the hygiene condition defined above. The order in which implementa‐

tions actually analyse macro uses within a library or program is defined in section 2.6.

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 3/6

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-ClingerAndRees91
https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#expansion-process

In the process of macro expansion, Scheme code is represented as datums (as if a
quote expression surrounding the code had been evaluated) which are wrapped in
a hygienic context. This context propagates down to each individual symbol in the
datum tree, each of which is ultimately wrapped. A single symbol wrapped with
context is an identifier. However, at the beginning of expansion, an entire datum
is wrapped in one context. As the analysis and expansion of macro uses pro‐
gresses, the hygienic context is pushed down to new wraps on the datums con‐
tained within the original datum. This allows the expander to efficiently maintain
and update the same hygienic context for a large tree of Scheme code at once,
copying it only when required.

The hygienic context contained in a wrap consists of a history, which is a set of
time-stamps, and a lexical environment, which keeps track of identifiers’ lexical
addresses. The history is used in the expansion process to keep track of when an
identifier was introduced: the time-stamps within the history are of two types, re‐
calling respectively the entry and exit of identifiers into and out of a transformer
when it is called in a single macro transcription step. The lexical environment
keeps track of where in the code identifiers were introduced and bound, including
which binding each identifier has.

Note: In the R6RS, the history was referred to as the marks, and each time-stamp as one

mark (for a time-stamp recording the completion of a macro transcription step) or an anti‐

mark (for a time-stamp recording the beginning of a macro transcription step). The lexical

environment was referred to as a set of substitutions, and a lexical address as the label on

one substitution. The model defined by this report is semantically identical, but the terminol‐

ogy has been changed (in the case of the term ‘time-stamp’, reverted to the original terminol‐

ogy of Kohlbecker) in the hope of improving the clarity of the definition to readers. Other au‐

thors have also referred to time-stamps as colours or renames, and to lexical addresses as

bindings or binding names.

The expander can create a new wrap on a datum with an existing history and lex‐
ical environment. The expander can also unwrap a layer of the syntax tree, a
process which consists of creating a new instance of the same type of datum con‐
tained within a wrap and filling it with new wraps, each with the contents of the
corresponding parts of the original datum and a copy of the hygiene information

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 4/6

within the original wrap. Unwrapping successive layers of the syntax tree allows
macro transformers to parse their input.

When the expander encounters a core binding construct such as lambda or
splicing-let-syntax, it extends the hygiene context in its wrap by adding new
lexical addresses for each of the identifiers which the construct binds. The ex‐
pander also maintains a global binding store mapping lexical addresses to their
expand-time values: if the core binding construct binds syntax, it also updates
this binding store mapping the new lexical address to the evaluated transformer
for the new syntax.

When the expander encounters a macro use, it looks up the transformer associ‐
ated with the macro use’s syntax keyword in the global binding store. It then adds
a new time-stamp to the history of the wrap for the macro use, which records the
beginning of a new macro transcription step, and calls the transformer with the
macro use in its new wrap.

The transformer procedure is allowed to return a datum which is not wrapped in
hygienic context, as long as all identifiers carry hygienic context — i.e., as long as
no symbols occur in any non-wrapped subtree of the datum. In order to correctly
record the end of the macro transcription step, therefore, the expander must add a
time-stamp recording the end of the same macro transcription step to every wrap
within the returned syntax object.

The effect of this process is that identifiers which were present anywhere in the
input form of the macro use are recalled with both the time-stamp for the begin‐
ning of a transcription step and the time-stamp for the end of the step in their
histories, while identifiers which were introduced by the transformer are recalled
only with the time-stamp for the end of the transcription step. When histories are
compared, time-stamps for the beginning and end of the same transcription step
are both ignored, and both may be discarded. This allows identifiers introduced by
the transformer call to be distinguished from identifiers in the input form, and
more generally allows identifiers introduced by macros to be distinguished from
macros within the original source code.

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 5/6

An identifier therefore has two kinds of name: the symbolic name, which is the
symbol datum wrapped by the identifier, and the time-stamped name, which is
the symbolic name plus the history. In most contexts, identifiers in Scheme
treated as if their name were the time-stamped name, not the symbolic name.

10/6/24, 1:10 PM The Macrological Fascicle: Macros and hygiene

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html 6/6

THE MACROLOGICAL FASCICLE

CHAPTER 2

Syntax transformation
In order to evaluate a Scheme program, the macro uses within the program must
be expanded into core forms which the implementation can directly further
process itself. The set of core forms is implementation-dependent: an implementa‐
tion may consider any syntax form defined by this report to be either a core form
or a macro; the difference is not observable to users. Uses of both macros and core
forms are represented as syntax objects.

Macro uses and core forms are both distinguished in forms to be processed by syn‐
tax keywords. These keywords occupy the same namespace as variables. That is,
within the same scope, an identifier can be bound as a variable or keyword, or nei‐
ther, but not both, and local bindings of either kind may shadow other bindings of
either kind. In order to use a macro or a core form, the corresponding keyword
must be imported into a program or library, or introduced within it by means of
special macro definition and binding forms.

Many uses of macros defined by the user have the form:

(⟨keyword⟩ ⟨datum⟩ ...)

where ⟨keyword⟩ is an identifier which lexically refers to the binding established
for the macro or core form. Macro uses can also take the form of improper lists,
bare identifiers, or set! forms, where the second subform of the set! is the
keyword:

(⟨keyword⟩ ⟨datum⟩ ⟨datum⟩)

⟨keyword⟩

(set! ⟨keyword⟩ ⟨datum⟩)

In the latter case, the set! keyword must lexically refer to the same binding as
the set! form defined in this report, and the binding of ⟨keyword⟩ must explicitly

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 1/16

allow this kind of macro use (see section 2.4).

Macros whose uses can take the form of bare identifiers are referred to as identi‐
fier macros.

2.1. Transformers

Syntax keywords are bound by user code to transformers.

Most transformers are ordinary Scheme procedures, called transformer proce‐
dures, which receive exactly one argument, a syntax object (see section 3) repre‐
senting the form of a macro use, and return exactly one value, a syntax object rep‐
resenting the result of expanding the input macro use. The result of expanding
the input form using the transformer procedure replaces the macro use in the
place where it occurred.

Variable transformers (section 2.4) are another kind of transformer.

It is undefined behaviour to re-enter the dynamic extent of a call to a transformer
by the expander after it has returned once.

2.2. Syntax definition and binding forms

Note: The examples in this section use the syntax-rules system to create transformers,

which is defined in section 5.

(define-syntax ⟨keyword⟩ ⟨transformer expression⟩) syntax

Define-syntax binds syntax keywords in a manner analogous to how define
binds variables. ⟨Transformer expression⟩ must be an expression that evaluates
at expand time to a transformer. The ⟨keyword⟩ is then bound as a syntax key‐
word to this transformer during the process described in section 2.6. The created
binding is visible throughout the body where define-syntax is used, unless shad‐
owed by another binding construct within the body.

Examples:

(let ()

 (define even?

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 2/16

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html#syntax-objects
https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html#syntax-rules-system

 (lambda (x)

 (or (= x 0) (odd? (- x 1)))))

 (define-syntax odd?

 (syntax-rules ()

 ((odd? x) (not (even? x)))))

 (even? 10))

⇒ #t

An implication of the left-to-right processing order (section 2.6) is that one defini‐
tion can affect whether a subsequent form is also a definition.

(let ()

 (define-syntax bind-to-zero

 (syntax-rules ()

 ((bind-to-zero id) (define id 0))))

 (bind-to-zero x)

 x)

⇒ 0

(splicing-let-syntax ⟨syntax bindings⟩
 ⟨definition or expression⟩ ...)

syntax

Syntax: ⟨Syntax bindings⟩ has the form:

((⟨keyword⟩ ⟨transformer expression⟩) ...)

⟨Transformer expression⟩ is as for define-syntax. It is a syntax violation if the
same identifier (in the sense of bound-identifier=?) appears as the ⟨keyword⟩ of
more than one of the ⟨syntax bindings⟩.

Semantics: The ⟨definition or expression⟩ forms are expanded in a syntactic envi‐
ronment containing the bindings of the syntactic environment of the splicing-
let-syntax form with additional bindings created by associating each of the ⟨key‐
word⟩s as syntax keywords to transformers obtained by evaluating the corre‐

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 3/16

sponding ⟨transformer expressions⟩. The evaluation of the ⟨transformer expres‐
sion⟩s takes place within the lexical environment where the splicing-let-
syntax form appears.

The ⟨definition or expression⟩ forms are treated as if wrapped in an implicit
begin; thus definitions created as a result of expanding the forms have the same
extent a definition which appeared in the place of the splicing-let-syntax
would have.

Example:

(let ((x 21))

 (splicing-let-syntax

 ((def (syntax-rules ()

 ((def stuff ...) (define stuff ...)))))

 (def foo 42))

 foo)

⇒ 42

Note: This form was called let-syntax in R6RS and had the additional restriction that the

forms had to be either definitions or expressions, but not both.

(splicing-letrec-syntax ⟨syntax bindings⟩
 ⟨definition or expression⟩ ...)

syntax

Syntax: Same as for splicing-let-syntax.

Semantics: The ⟨definition or expression⟩ forms are expanded in a syntactic envi‐
ronment containing the bindings of the syntactic environment of the splicing-
letrec-syntax form with additional bindings created by associating each of the
⟨keyword⟩s as syntax keywords to transformers obtained by evaluating the corre‐
sponding ⟨transformer expressions⟩. The evaluation of the ⟨transformer expres‐
sion⟩s takes place within a lexical environment which contains the bindings of the
⟨keyword⟩s themselves, so the transformers can transcribe forms into uses of the
macros introduced by the splicing-letrec-syntax form. It is undefined behav‐

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 4/16

iour if the evaluation of any of the ⟨transformer expressions⟩ requires knowledge
of the actual transformer bound to one of the ⟨keyword⟩s.

As for splicing-let-syntax, the ⟨definition or expression⟩ forms are treated as if
wrapped in an implicit begin and can expand into definitions visible outside of
the splicing-letrec-syntax form itself.

Note: This form was called letrec-syntax in R6RS and had similar restrictions on its con‐

tents to that report’s let-syntax, as described above.

(let-syntax ⟨syntax bindings⟩ ⟨body⟩) syntax

Syntax: The ⟨syntax bindings⟩ are the same as for splicing-let-syntax and
splicing-letrec-syntax.

Semantics: The syntactic environment in the location of the let-syntax expres‐
sion is extended by new syntax keyword bindings in the manner of splicing-
let-syntax and the ⟨body⟩ expanded within that environment. Let-syntax dif‐
fers from splicing-let-syntax in that it creates a new lexical body which is not
spliced into a surrounding body: definitions within the ⟨body⟩ are not visible out‐
side of the extent of the ⟨body⟩ itself.

Example: Compare this example with the example under splicing-let-syntax.

(let ((x 21))

 (let-syntax

 ((def (syntax-rules ()

 ((def stuff ...) (define stuff ...)))))

 (def foo 42))

 foo)

⇒ 21

Implementation:

(define-syntax let-syntax

 (syntax-rules ()

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 5/16

 ((_ bindings body_0 body_1 ...)

 (splicing-let-syntax bindings

 (let () body_0 body_1 ...)))))

Note: This form is the same as the let-syntax in the small language report, but not the

same as let-syntax from the R6RS (see the remark under splicing-let-syntax). The

(scheme base) library must export the same binding [Editorial note: as whatever large language

library this ends up in.]

(letrec-syntax ⟨syntax bindings⟩ ⟨body⟩) syntax

Syntax: The ⟨syntax bindings⟩ are the same as for splicing-let-syntax and
splicing-letrec-syntax.

Semantics: The syntactic environment in the location of the letrec-syntax ex‐
pression is extended by new syntax keyword bindings in the manner of splicing-
letrec-syntax and the ⟨body⟩ expanded within that environment. Letrec-
syntax differs from splicing-letrec-syntax in that, like let-syntax, it creates
a new lexical body which is not spliced into a surrounding body.

Example:

(letrec-syntax

 ((xor

 (syntax-rules ()

 ((_) #f)

 ((_ e)

 (if e #t #f))

 ((_ e_1 e_2 ...)

 (let ((temp e_1))

 (if temp

 (not (or e_2 ...))

 (xor e_2 ...)))))))

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 6/16

 (values (xor #t #f #f)

 (xor #t #t #f)))

⇒ #t #f

Implementation:

(define-syntax letrec-syntax

 (syntax-rules ()

 ((_ bindings body_0 body_1 ...)

 (splicing-letrec-syntax bindings

 (let () body_0 body_1 ...)))))

Note: This form is the same as the letrec-syntax in the small language report, but not the

same as letrec-syntax from the R6RS (see the remark under splicing-let-syntax). The

(scheme base) library must export the same binding [Editorial note: as whatever large language

library this ends up in.]

2.3. Syntax parameters

Syntax parameters are a minor variation on ordinary syntax keyword bindings.
They provide a mechanism for rebinding a macro definition within the dynamic
extent of a macro expansion.

Among other uses, this provides a convenient solution to one of the most common
types of unhygienic macro: those that reintroduce the same unhygienic binding
each time the macro is used. With syntax parameters, instead of introducing the
binding unhygienically each time, one instead creates a single binding for the key‐
word, which is adjusted when the keyword is supposed to have a different mean‐
ing. As no new bindings are introduced, hygiene is preserved. Using a syntax pa‐
rameter also provides the advantage that the identifier for the binding can be re‐
named when it is imported, if the macro user so wishes.

(define-syntax-parameter ⟨keyword⟩ ⟨transformer expression⟩) syntax

Binds ⟨keyword⟩ as a parameterizable syntax keyword, using the transformer cre‐
ated by evaluating the ⟨transformer expression⟩ at expand time as the default

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 7/16

transformer. When ⟨keyword⟩ is used outside the context of a syntax-
parameterize body, the result is equivalent to if that ⟨keyword⟩ had been defined
using define-syntax.

Define-syntax-parameter is similar to define-syntax, except the created bind‐
ing is marked as parameterizable.

(syntax-parameterize ((⟨keyword⟩ ⟨transformer expression⟩) ...)
 ⟨body⟩)

syntax

Adjusts the ⟨keyword⟩s to use the transformer obtained by evaluating the corre‐
sponding ⟨transformer expression⟩s when the keywords are used within the ex‐
pansion of the ⟨body⟩. It is a syntax violation if any of the ⟨keyword⟩s refer to
bindings that are not parameterizable syntax keyword bindings.

Syntax-parameterize differs from let-syntax in that the binding is not shad‐
owed, but adjusted, and so uses of the ⟨keyword⟩s in the expansion of ⟨body⟩ use
the new transformers.

Example: The following example defines a form lambda^ which automatically
makes an early-return procedure called return available within its body.

(define-syntax-parameter return

 (erroneous-syntax "return used outside of lambda^"))

(define-syntax lambda^

 (syntax-rules ()

 ((lambda^ formals body_0 body_1 ...)

 (lambda formals

 (call-with-current-continuation

 (lambda (escape)

 (syntax-parameterize

 ((return (identifier-syntax escape)))

 body_0 body_1 ...)))))))

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 8/16

Todo: This example will probably need changing to use delimited control op‐
erators, once it is decided what form those will take in the Foundations.

2.4. Variable transformers

Variable transformers are another kind of transformer besides transformer proce‐
dures. A variable transformer is a simple container for a procedure, created by
calling make-variable-transformer on that procedure. Binding a syntax key‐
word to a variable transformer declares to the expander that the procedure con‐
tained within it also expects to process macro uses of the form (set! ⟨keyword⟩
⟨datum⟩). An attempt to expand a macro use of this form whose transformer is
not a variable transformer is a syntax violation.

(make-variable-transformer proc) procedure

Wraps the procedure proc in a variable transformer and returns it.

When a syntax keyword is bound to the result of invoking make-variable-
transformer on a transformer procedure, that transformer procedure is invoked
for all macro uses with that keyword, including when the keyword is the left-hand
side of a set! expression, which would otherwise be a syntax violation.

Rationale: If set! worked as described for all macro transformer procedures, many macros

would mistakenly process set! forms as if they were macro uses with the keyword in the op‐

erator position, and could actually produce a result if their usual syntax happened to be of

the approximate form (⟨keyword⟩ ⟨identifier⟩ ⟨expression⟩). The result of that expansion

might then turn out to be valid Scheme code, creating unexpected behaviour in a program

whose cause might be difficult to discover. All macros would have to check explicitly for the

comparatively rare set! case to guard against it. By centralizing this check within the macro

expander, requiring transformers which actually expect to process set! forms to explicitly de‐

clare this fact, this kind of programming error becomes impossible.

Example:

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 9/16

(define-syntax used-as

 (make-variable-transformer

 (lambda (stx)

 (cond ((identifier? stx)

 (quote-syntax (quote reference)))

 ((free-identifier=? (car (unwrap-syntax stx)) #'set!)

 `(,(quote-syntax cons)

 ,(quote-syntax (quote assignment))

 (,(quote-syntax quote)

 ,(cdr (unwrap-syntax

 (cdr (unwrap-syntax stx)))))))

 (else

 `(,(quote-syntax cons) ,(quote-syntax (quote combination))

 (,(quote-syntax quote)

 ,(cdr (unwrap-syntax stx)))))))))

used-as

⇒ reference

(set! used-as x)

⇒ (assignment x)

(used-as y)

⇒ (combination y)

2.5. Identifier properties

During expansion, a set of properties can be associated with each identifier in a
Scheme program. This allows arbitrary information to be associated with identi‐
fiers, which can be used by macro transformers to inform their treatment of par‐
ticular identifiers. For example, the sample implementation of the syntax-case
pattern matcher included with this report uses identifier properties to implement
pattern variables.

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 10/16

Each property defined on an identifier associates a key (which must also be an
identifier) with a value (which may be any object). When an identifier binding is
created by definition or by a local binding construct, it is associated with a new,
empty set of identifier properties. If the identifier bound shadows one from a con‐
taining lexical context, the identifier properties on the shadowed identifier effec‐
tively become hidden within the lexical extent of the new binding, in the same
way its binding is hidden.

When an identifier property is defined on an identifier, the property belongs only
to the lexical scope in which that property is defined. The property itself may
shadow properties created on the same identifier and with the same key in con‐
taining lexical contexts.

When an identifier is imported from a library, it brings with it a copy of the set of
identifier properties that were defined on it in that library. Additional identifier
properties may be defined on it, and properties from the original library may be
redefined within the context in which the identifier was imported, without those
definitions or redefinitions being visible in the original library. If the identifier
was imported into a library which subsequently re-exports it, the re-exported ver‐
sion has the identifier properties as they were (re-)defined in the library which re-
exports it. If the same binding is then imported into another context from both
the original and the re-exporting library, or from multiple re-exporting libraries
which each defined their own properties on the identifier, the identifier in that
context has a set of properties which is the union of the properties from all the li‐
braries it is imported from. If two properties with the same key are imported on
the same identifier, and the values of the properties are not the same in the sense
of eqv?, it is an import error.

Note: Though identifier properties are superficially similar to a classical Lisp feature known

as symbol property lists, the two are quite different, even though they can sometimes be used

for the same purposes. A symbol property list is typically held globally, unlike identifier prop‐

erties, which are lexically scoped to where they were defined.

Todo: Define the interaction of identifier properties with phasing.

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 11/16

(define-property ⟨identifier⟩ ⟨key⟩ ⟨expression⟩) syntax

Syntax: Both ⟨identifier⟩ and ⟨key⟩ must be bound identifiers.

Semantics: The ⟨expression⟩ is evaluated at expand time to produce a single
value, and an identifier property is defined on the ⟨identifier⟩ associating the
⟨key⟩ with this value.

Operationally, when the expander encounters a define-property form, it creates
a new lexical address within the lexical environment for a tuple of the ⟨identifier⟩
and the lexical address for the binding of the ⟨key⟩. It then stores the result of
evaluating the ⟨expression⟩ in its global binding store under the new address.

(identifier-property id key) procedure
(identifier-property id key default) procedure

Returns the identifier property associated with the identifier id whose key has the
same binding as key. If there is no such property, it returns default, or #f if no
default argument was provided. If either id or key is not bound, a syntax violation
is signalled.

The identifier-property procedure can only be called within the dynamic ex‐
tent of a call by the expander to a transformer. If it is called in other situations, it
is unspecified whether the procedure will work as intended, or act as if id or key
or the property requested is unbound, or will signal an error [Editorial note: an as‐

sertion violation].

Operationally, identifier-property first finds the lexical addresses 𝑎𝑖𝑑 and 𝑎𝑘𝑒𝑦
of id and key respectively, then finds the lexical address 𝑎𝑝𝑟𝑜𝑝 in the lexical envi‐
ronment of id for the tuple of id and these lexical addresses. Finally, it looks up
the address 𝑎𝑝𝑟𝑜𝑝 in the global binding store and returns the value associated
with it.

Note: Two identifiers which share the same binding will not necessarily have the same identi‐

fier properties: free-identifier=? is used to match identifier keys but not the identifiers

themselves in the binding store when looking up identifiers. This can occur when an identi‐

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 12/16

fier property’s value is shadowed, or when a binding is imported into multiple libraries or un‐

der multiple names, as in the following example.

(import (scheme base)

 (rename (only (scheme base) cons) (cons make-pair)))

(define-syntax renamed?

 (erroneous-syntax "only an identifier property key"))

(define-property make-pair renamed? #t)

(define-syntax both-renamed?

 (lambda (stx)

 (and (identifier-property #'cons #'renamed?)

 (identifier-property #'make-pair #'renamed?))))

(values (free-identifier=? #'cons #'make-pair)

 (both-renamed?))

⇒ #t #f

2.6. Expansion process

In order to expand a body (whether library, program, or other body), the expander
processes the initial forms within from left to right. How the expander processes
each form encountered depends upon the kind of form.

[Editorial note: The following has been formulated based on the equivalent expansion process

defined by the R6RS, but assuming that R7RS will relax the restriction on the order of defini‐

tions and expressions in all bodies. R7RS already relaxed the restriction in library bodies

compared to R6RS. If the restriction is not relaxed within regular bodies, only a small adjust‐

ment to the text, reverting to R6RS semantics for those bodies, is required.]

[Editorial note: This process does not define semantics compatible with those prescribed for

program bodies by the small language. Those semantics will be specified in a future fascicle.]

macro use

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 13/16

The expander invokes the associated transformer to transform the macro use,
then recursively performs whichever of these actions are appropriate for the re‐
sulting form.

define-syntax or define-syntax-parameter form

The expander expands and evaluates the right-hand-side expression and binds
the keyword to the resulting transformer.

define form

The expander records the fact that the defined identifier is a variable but defers
expansion of the right-hand-side expression until after all of the forms in the
body have been processed.

define-property form

The expander expands and evaluates the value expression and creates or re‐
places a property for the key on the given identifier, associating it with the re‐
sulting value.

begin form

The expander splices the subforms into the list of body forms it is processing.

splicing-let-syntax or splicing-letrec-syntax form

The expander splices the inner body forms into the list of (outer) body forms it
is processing, arranging for the keywords bound by the splicing-let-syntax
and splicing-letrec-syntax to be visible only in the inner body forms.

expression, i.e., nondefinition
The expander defers the expansion of the expression until after all the forms in
the body have been processed.

Once the rightmost form in the body has been processed, the expander makes a
second pass over the forms deferred as the right-hand sides of variable definitions
or as nondefinitions.

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 14/16

Note that this algorithm does not directly reprocess any form. It requires a single
left-to-right pass over the definitions followed by a single pass (in any order) over
the body expressions and deferred right-hand sides.

The behaviour is undefined if any definition in the sequence of forms to define any
identifier whose binding is used to determine the meaning of the undeferred por‐
tions of the definition, or of any definition that precedes it in the sequence of
forms. Similarly, the behaviour is undefined if the evaluation of any form in the
sequence of forms uses or assigns the value of a defined variable whose definition
is to the right of that form. For example, the behaviour of each of the following ex‐
amples is undefined:

(define define 3)

(begin (define begin list))

(display (+ x 16))

(define x 32)

[Editorial note: Last example should be within a (let () ...) if the relaxation is accepted

for all bodies.]

The behaviour of the following example is not undefined, because the body of the
internal increase procedure will not be evaluated by a call to it until after the
value variable it closes over has been defined:

(define (make-counter)

 (define (increase)

 (set! value (+ value 1))

 value)

 (define value 0)

 increase)

2.7. Phases of evaluation and macro expansion

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 15/16

The algorithm for processing forms in bodies outlined above requires the expres‐
sions creating macro transformers to be evaluated before evaluation of the
Scheme program as a whole can proceed. The environment in which such evalua‐
tion takes place is defined by dividing the evaluation of Scheme programs into
phases. Each phase is identified by a non-negative integer, and the number of the
phase in which evaluation is currently taking place at any time is denoted 𝜙. If a
macro definition appears in phase 𝑛 code, then its right-hand-side expression is
evaluated in phase 𝑛 + 1. The expansion and evaluation of Scheme forms after all
syntax keywords have been defined takes place at phase 0; thus, at the top level of
a body, the expansion and evaluation of the right-hand sides of all define-syntax
forms and the transformer expressions of splicing-let-syntax and splicing-
letrec-syntax bindings takes place at phase 1.

The environment at each phase is defined as follows. The environment at the ear‐
liest phase of evaluation contains all bindings which the program or library has
imported from other libraries. All of these bindings, whether they are variables or
syntax keywords, are available at all phases of evaluation. All syntactic bindings
created in the course of expansion are likewise available at all phases of evalua‐
tion within the scopes in which they are visible. Variable bindings are available
only in the phase in which they are created. It is undefined behaviour to either at‐
tempt to access the binding of, or to rebind an identifier which is a variable de‐
fined in a different phase.

Note: The possibility provided by the R6RS for explicit control of the availability of imported

bindings at particular phases in import specs has been removed, because it proved unpopular

with implementers and users.

10/6/24, 1:11 PM The Macrological Fascicle: Syntax transformation

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html 16/16

THE MACROLOGICAL FASCICLE

CHAPTER 3

Syntax objects
Syntax objects are the means by which the hygiene model (section 1.2) is imple‐
mented in the Scheme language. They are the means by which macros written by
users can obtain information about the forms used to invoke them at the site of
macro use, and by which they produce their output.

A syntax object may be wrapped, as described in the hygiene model. It may also
be unwrapped, fully or partially, i.e., consist of list and vector structure with
wrapped syntax objects or nonsymbol values at the leaves. More formally, a syn‐
tax object is:

a pair of syntax objects;

a vector of syntax objects;

a datum which is not a symbol, nor a pair, nor a vector; or

a wrapped syntax object.

A syntax object may contain circular structures created by datum labels or by use
of the datum->syntax procedure (section 3.2). An implementation may also con‐
sider other, non-datum values to be syntax objects, but the meaning and behav‐
iour of such values when included in the output of transformers is not defined by
this report.

The distinction between the terms ‘syntax object’ and ‘wrapped syntax object’ is
important. For example, when invoked by the expander, a transformer procedure
must accept a wrapped syntax object but may return any syntax object, including
an unwrapped syntax object. Wrapped syntax objects are distinct from other types
of values.

3.1. Identifiers

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 1/10

https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html#hygiene-model

Syntax objects representing identifiers are always wrapped. A symbol which is
not wrapped is never a valid syntax object.

(identifier? obj) procedure

Returns #t if obj is an identifier, i.e., a syntax object representing an identifier,
and #f otherwise.

Examples:

(identifier? #'x)

⇒ #t

(identifier? 'x)

⇒ #f

(identifier? #'(x))

⇒ #f

(identifier-defined? id) procedure

Returns #t if the given id has a binding associated with it, or #f otherwise.

Operationally, identifier-defined? returns #t if the given identifier has a lexi‐
cal address associated with it within its lexical environment, and #f otherwise.

Rationale: While it is possible to detect whether a particular identifier is bound or not using

identifier properties (section 2.5), it is somewhat cumbersome to have to catch and deal with

the exception raised by an attempted reference to a property on an unbound identifier. The

identifier-defined? procedure also does not depend on the environment maintained by the

expander, and can therefore be used outside of the dynamic extent of a call to a macro

transformer.

In general, a test to determine whether an identifier is bound or not is useful to improve er‐

ror reporting in macros which depend on some identifier named within them having been

bound outside of the macro use.

Examples:

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 2/10

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#identifier-properties

(identifier-defined? #'identifier-defined?)

⇒ #t

Assuming no identifier x is defined:

(identifier-defined? #'x)

⇒ #f

(let ((x 1)) (identifier-defined? #'x))

⇒ #t

(generate-identifier) procedure
(generate-identifier symbol) procedure

Returns a new identifier. The optional argument symbol specifies the symbolic
name of the resulting identifier. The returned identifier is guaranteed not to be
bound-identifier=? to any existing identifier. If the optional symbol argument is
not given it should also not be symbolic-identifier=? to any existing identifier.

Operationally, (generate-identifier symbol) returns a new wrapped syntax
object wrapping the symbol with a history containing a time-stamp for the end of
a fictive macro transcription step.

(generate-temporaries list-stx) procedure

list-stx must be a list or syntax object representing a list-structured form.

Returns a list of generated identifiers as long as the input list list-stx. Each gener‐
ated identifier is subject to the same requirements as imposed on generate-
identifier when called without an argument.

Operationally, generate-temporaries first converts list-stx to a proper list, un‐
wrapping the successive cdrs of any wrapped pairs, then calls map on the resulting
list, generating a new identifier with (generate-identifier) for each item.

(bound-identifier=? id id) procedure1 2

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 3/10

Returns #t if a binding for one id would capture a reference to the other in the
output of the transformer, assuming that the reference appears within the scope
of the binding, and #f otherwise. In general, two identifiers are bound-
identifier=? only if both are present in the original program or both are intro‐
duced by the same transformer application (perhaps implicitly — see datum-
>syntax).

Operationally, bound-identifier=? returns #t if id and id both have the same
symbolic names and the same histories (discarding time-stamps for the beginning
and end of the same macro transcription step), and #f otherwise.

Examples:

(bound-identifier=? #'x #'x)

⇒ #t

(bound-identifier=? #'x #'y)

⇒ #f

(bound-identifier=? (generate-identifier 'x)

 (generate-identifier 'x))

⇒ #f

(symbolic-identifier=? id id) procedure

Returns #t if the two ids have the same symbolic name, and #f otherwise.

Rationale: An example definition for this procedure was given in the R6RS, but the procedure

was not actually made part of any library. Since it is part of the operation of free-

identifier=? and is needed to implement the small language’s cond-expand, it is provided

here.

Examples:

(symbolic-identifier=? (generate-identifier 'x)

 (generate-identifier 'x))

1 2

1 2

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 4/10

⇒ #t

(symbolic-identifier=? #'x #'y)

⇒ #f

Implementation:

(define (symbolic-identifier=? id_1 id_2)

 (symbol=? (syntax->datum id_1)

 (syntax->datum id_2)))

(free-identifier=? id id) procedure

Returns #t if the bindings for the two ids would refer to the same lexical binding
if inserted as free identifiers in the output of the transformer. If either of the ids
is not lexically bound, return #t if they are symbolic-identifier=?. Otherwise,
return #f.

Operationally, free-identifier=? returns #t if id and id map to the same lexi‐
cal address within their respective lexical environments, or if neither maps to any
lexical address and their symbolic names are the same, and #f otherwise.

Free-identifier=? can be used within transformers to find uses of auxiliary syn‐
tax keywords.

Examples:

(import (scheme base)

 (rename (scheme base)

 (else otherwise)))

(free-identifier=? #'else #'otherwise)

⇒ #t

(free-identifier=? #'else #'=>)

⇒ #f

1 2

1 2

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 5/10

The following examples show that unbound identifiers compare the same if they
have the same symbolic names. The examples assume that no identifier x is
defined.

(free-identifier=? (generate-identifier 'x)

 (generate-identifier 'x))

⇒ #t

(free-identifier=? #'x (generate-identifier 'x))

⇒ #t

(let ((x 1))

 (free-identifier=? #'x (generate-identifier 'x)))

⇒ #f

3.2. Wrapped syntax objects

(quote-syntax ⟨syntactic datum⟩) syntax

Syntax: The ⟨syntactic datum⟩ is either an identifier, or a datum which is neither
an identifier nor a list nor a vector, or one of the following.

(⟨syntactic datum⟩ ...)

(⟨syntactic datum⟩ ⟨syntactic datum⟩)

#(⟨syntactic datum⟩ ...)

Semantics: Quote-syntax is the syntactic analogue of quote. It evaluates to a
syntax object representation of the ⟨syntactic datum⟩ which retains hygiene infor‐
mation for the identifiers contained in the ⟨syntactic datum⟩. The result of evalu‐
ating a quote-syntax expression is suitable for inclusion in the expansion of a
macro use.

Examples:

(symbol? (quote-syntax x))

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 6/10

⇒ #f

(identifier? (unwrap-syntax (quote-syntax x)))

⇒ #t

(let-syntax ((car (lambda (x) (quote-syntax car))))

 ((car) '(0)))

⇒ 0

(let-syntax

 ((quote-foo

 (lambda (stx)

 (quote-syntax (quote foo)))))

 (let ((quote (lambda (x) 'bar)))

 (quote-foo)))

⇒ foo

Note: This form was called syntax in the R4RS. In the R6RS, the form called syntax was ex‐

tended with additional functionality; that is also the version which appears under that name

in this report (section 4.3).

(unwrap-syntax stx) procedure

Unwraps the immediate datum structure from the syntax object stx, leaving
nested syntax structure (if any) in place, without stripping any syntactic informa‐
tion from identifiers.

Operationally, if stx is an identifier or is not a wrapped syntax object, then it is re‐
turned unchanged. Otherwise unwrap-syntax converts the outermost structure of
stx into a data object, returning a pair whose car and cdr are syntax objects, a vec‐
tor whose elements are syntax objects, or a Scheme value which is neither an
identifier, a pair, nor a vector. Syntax objects within the pairs or vectors returned
by unwrap-syntax retain their original hygiene information.

Examples:

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 7/10

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html#generating-expansions

(identifier? (unwrap-syntax (quote-syntax x)))

⇒ #t

(identifier? (cdr (unwrap-syntax (quote-syntax (x . y)))))

⇒ #t

(identifier? (cdr (unwrap-syntax (quote-syntax (x y z)))))

⇒ #f

(syntax->datum stx) procedure

Strips all syntactic information from the syntax object stx and returns the corre‐
sponding Scheme datum. Identifiers stripped in this manner are converted to
their symbolic names.

The result of syntax->datum must not be and must not contain any wrapped syn‐
tax objects. If a datum wrapped within stx contains cycles, these must be present
(re-created in a copy, if necessary) within the returned datum.

Rationale: By processing the result of calling syntax->datum on a syntax object in parallel

with unwrapping the original syntax object step by step, transformers which need to handle

cyclical structures specially can detect and process such structures as appropriate.

This procedure irrevocably deletes hygiene information from identifiers: syntax-
>datum and datum->syntax cannot, in general, round-trip cleanly.

Examples:

(symbol? (syntax->datum #'x))

⇒ #t

(syntax->datum (quote-syntax (quote #1=(a . #1#))))

⇒ (quote #1=(a . #1#))

Note: This procedure, which can operate on entire expressions and not just individual identi‐

fiers, replaces the procedure identifier->symbol of the R4RS.

(datum->syntax context-id datum) procedure

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 8/10

context-id must be an identifier and datum should be a datum value.

Returns a syntax object representation of datum that contains the same contex‐
tual information as context-id, with the effect that the syntax object behaves as if
it were introduced into the code when context-id was introduced.

Operationally, datum->syntax creates a new wrapped syntax object which wraps
datum and which copies its hygiene information from context-id.

Note: This procedure, which can operate on entire expressions and not just individual sym‐

bols, replaces the procedure construct-identifier of the R4RS.

Todo: What if datum already contains wrapped syntax objects? Should they
be unchanged in the output?

Example: The following macro makes an early return procedure available in its
body under the name return, without this name having to be explicitly given to
the macro.

(define-syntax with-return

 (lambda (stx)

 (let ((return-id

 (syntax->datum (car (unwrap-syntax stx)) 'return))

 (body (cdr (unwrap-syntax stx))))

 `(,(quote-syntax call-with-current-continuation)

 (,(quote-syntax lambda) (,return-id) . ,body)))))

(define (find-odd ls)

 (with-return

 (for-each

 (lambda (n) (if (odd? n) (return n)))

 ls)))

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 9/10

(find-odd '(6 2 8 3 1 8))

⇒ 3

The following example shows how the name return is introduced into the code at
the same time the keyword with-return in the macro use was introduced: it is
available within the code introduced by the expansion of a hygienic syntax-rules
macro, and not to the user of that macro, preserving the referential transparency
of hygienic macros which make use of non-hygienic macros in their
implementation.

(define-syntax suppress-exceptions

 (syntax-rules ()

 ((_ body_0 body_1 ...)

 (with-return

 (with-exception-handler

 (lambda (e) (return #f))

 (lambda () body_0 body_1 ...))))))

(suppress-exceptions (raise 'oops))

⇒ #f

(let ((return (lambda (ignored) #t)))

 (suppress-exceptions

 (return #f)))

⇒ #t

Todo: This example will probably need changing to use delimited control op‐
erators, once it is decided what form those will take in the Foundations.

10/6/24, 1:11 PM The Macrological Fascicle: Syntax objects

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html 10/10

THE MACROLOGICAL FASCICLE

CHAPTER 4

The syntax-case system
The syntax-case system provides support for writing low-level macros in a high-
level style.

4.1. Pattern variables

Pattern variables are the unifying concept of both the syntax-case system and
the closely related syntax-rules system, which is defined in section 5. They pro‐
vide support for accessing the terminal symbols of a basic parser which operates
on Scheme forms.

Pattern variables are a type of binding exactly like variables and syntax key‐
words. They occupy the same namespace as variables and syntax keywords and
can shadow, and be shadowed by, bindings of them; the same name cannot refer to
both a pattern variable and another type of binding within the same scope. The
value of pattern variables cannot be changed after they have been bound.

Unlike normal variables, pattern variables can be bound to a sequence of multiple
values, or any nesting of sequences of multiple values. The number of levels of
nesting is determined statically by the pattern which names the pattern variable
for binding. When the values are actually assigned to such a pattern variable at
run time, each sequence may ultimately be empty or contain only one value.

4.2. Parsing input

The centrepiece of the syntax-case macro system is the eponymous pattern-
based parser, the fundamental form for parsing macro uses, and the syntax form,
the fundamental form for constructing syntax objects. Syntax-case binds pattern
variables after parsing a form, and syntax is used to access their values.

(syntax-case ⟨expression⟩ (⟨pattern literal⟩ ...)
 ⟨syntax-case clause⟩ ...)

syntax

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 1/14

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html#syntax-rules-system

(syntax-case ⟨custom ellipsis clause⟩
 ⟨expression⟩ (⟨pattern literal⟩ ...)
 ⟨syntax-case clause⟩ ...)

syntax

_ auxiliary syntax
... auxiliary syntax

Syntax: Each ⟨pattern literal⟩ must be an identifier. Each ⟨syntax-case clause⟩
must take one of the following two forms:

(⟨pattern⟩ ⟨output expression⟩)

(⟨pattern⟩ ⟨fender⟩ ⟨output expression⟩)

⟨Fender⟩ and ⟨output expression⟩ must be expressions.

A ⟨pattern⟩ is an identifier, a constant, or one of the following.

(⟨pattern⟩ ...)

(⟨pattern⟩ ⟨pattern⟩ ⟨pattern⟩)

(⟨pattern⟩ ... ⟨pattern⟩ ⟨ellipsis⟩ ⟨pattern⟩ ...)

(⟨pattern⟩ ... ⟨pattern⟩ ⟨ellipsis⟩ ⟨pattern⟩ ⟨pattern⟩)

#(⟨pattern⟩ ...)

#(⟨pattern⟩ ... ⟨pattern⟩ ⟨ellipsis⟩ ⟨pattern⟩ ...)

⟨Custom ellipsis clause⟩, if present, is an instance of custom-ellipsis
(section 4.5); ⟨ellipsis⟩ within a ⟨pattern⟩ refers to the auxiliary syntax keyword
... unless overridden by such a clause.

Semantics: A syntax-case expression first evaluates ⟨expression⟩ to obtain a syn‐
tax object. This input syntax object is matched against the ⟨pattern⟩s contained
in the ⟨syntax-case clause⟩s from left to right.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 2/14

An identifier appearing within a ⟨pattern⟩ can be an underscore (_), a literal iden‐
tifier listed in the list of ⟨pattern literal⟩s, or the ⟨ellipsis⟩. All other identifiers
appearing within a ⟨pattern⟩ are pattern variables.

Pattern variables match arbitrary input elements and are used to refer to ele‐
ments of the input in the template. It is a syntax violation if the same pattern
variable (in the sense of bound-identifier=?) appears more than once in a ⟨pat‐
tern⟩.

Underscores also match arbitrary input elements but are not pattern variables
and so cannot be used to refer to those elements. If an underscore appears in the
⟨pattern literal⟩s list, then that takes precedence and underscores in the ⟨pat‐
tern⟩s match as literals. Multiple underscores can appear in a ⟨pattern⟩.

Identifiers that appear in (⟨pattern literal⟩ ...) are interpreted as literal identi‐
fiers to be matched against corresponding elements of the input. An identifier
within a ⟨pattern⟩ is treated as a literal identifier if and only if it is bound-
identifier=? to an identifier within (⟨pattern literal⟩ ...). An element in the
input matches a literal identifier in the pattern if and only if the two identifiers
are the same in the sense of free-identifier=?.

A subpattern followed by ⟨ellipsis⟩ can match zero or more elements of the input,
unless ⟨ellipsis⟩ appears in the ⟨pattern literal⟩s, in which case it is matched as a
literal.

More formally, an input expression 𝐸 matches a pattern 𝑃 if and only if:

𝑃 is an underscore (_); or

𝑃 is a non-literal identifier; or

𝑃 is a literal identifier and 𝐸 is free-identifier=? to it; or

𝑃 is a list (𝑃1 ... 𝑃𝑛) and 𝐸 is a list of 𝑛 elements that match 𝑃1 through
𝑃𝑛 respectively; or

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 3/14

𝑃 is an improper list (𝑃1 𝑃2 ... 𝑃𝑛 . 𝑃𝑛 + 1) and 𝐸 is a list or improper list
of 𝑛 or more elements that match 𝑃1 through 𝑃𝑛, respectively, and whose nth
tail matches 𝑃𝑛 + 1; or

𝑃 is of the form (𝑃1 ... 𝑃𝑘 𝑃𝑒 ⟨ellipsis⟩ 𝑃𝑚+ 1 ... 𝑃𝑛) where 𝐸 is a
proper list of 𝑛 elements, the first 𝑘 of which match 𝑃1 through 𝑃𝑘, respec‐
tively, whose next 𝑚− 𝑘 elements each match 𝑃𝑒, whose remaining 𝑛 −𝑚 ele‐
ments match 𝑃𝑚+ 1 through 𝑃𝑛; or

𝑃 is of the form (𝑃1 ... 𝑃𝑘 𝑃𝑒 ⟨ellipsis⟩ 𝑃𝑚+ 1 ... 𝑃𝑛 . 𝑃𝑥) where 𝐸 is a
list or improper list of 𝑛 elements, the first 𝑘 of which match 𝑃1 through 𝑃𝑘,
whose next 𝑚− 𝑘 elements each match 𝑃𝑒, whose remaining 𝑛 −𝑚 elements
match 𝑃𝑚+ 1 through 𝑃𝑛, and whose nth and final cdr matches 𝑃𝑥; or

𝑃 is a vector of the form #(𝑃1 ... 𝑃𝑛) and 𝐸 is a vector of 𝑛 elements that
match 𝑃1 through 𝑃𝑛; or

𝑃 is of the form #(𝑃1 ... 𝑃𝑘 𝑃𝑒 ⟨ellipsis⟩ 𝑃𝑚+ 1 ... 𝑃𝑛) where 𝐸 is a vec‐
tor of 𝑛 elements the first 𝑘 of which match 𝑃1 through 𝑃𝑘, whose next 𝑚− 𝑘
elements each match 𝑃𝑒, and whose remaining 𝑛 −𝑚 elements match 𝑃𝑚+ 1
through 𝑃𝑛; or

𝑃 is a constant and 𝐸 is equal to 𝑃 in the sense of the equal? procedure.

When the ⟨pattern⟩ of a given ⟨syntax-case clause⟩ matches the input syntax ob‐
ject, and the ⟨syntax-case clause⟩ contains a ⟨fender⟩ expression, the expression is
evaluated to act as an additional constraint on acceptance of a clause. If the result
of the evaluation is #f, the clause as a whole does not match, and pattern match‐
ing resumes on the next clause to the right. It is a syntax violation if the input
syntax object does not match any of the clauses.

If the ⟨pattern⟩ of the clause matches and there is no ⟨fender⟩ expression, or the
evaluation of the ⟨fender⟩ expression returned a true value, the ⟨output expres‐
sion⟩ is evaluated and its value returned as the value of the syntax-case expres‐
sion. If the syntax-case form is in tail context, each ⟨output expression⟩ is also in
tail position.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 4/14

Pattern variables contained within a clause’s ⟨pattern⟩ are bound within the
clause’s ⟨fender⟩ (if present) and ⟨output expression⟩ to the corresponding pieces
of the input form which they matched. Pattern variables contained within subpat‐
terns followed by ⟨ellipsis⟩ are marked as holding sequences of multiple values ac‐
cording to the numbers of levels of nested levels of such subpatterns they are
within; the results of destructuring those the input form according to the pattern
become the values of those pattern variables.

Note: R6RS made any attempt to use the ellipsis or underscore as literals a syntax violation,

and did not provide any means of renaming the ellipsis.

4.3. Generating expansions

(syntax ⟨template⟩) syntax
(syntax ⟨custom ellipsis clause⟩ ⟨template⟩) syntax
#'⟨template⟩ syntax
... auxiliary syntax

Syntax: (syntax ⟨template⟩) can be abbreviated as #'⟨template⟩. The two nota‐
tions are equivalent in all respects.

A ⟨template⟩ is an identifier, a pattern datum, or one of the following.

(⟨subtemplate⟩ ...)

(⟨subtemplate⟩ ⟨template⟩)

#(⟨subtemplate⟩ ...)

(⟨ellipsis⟩ ⟨template⟩)

A ⟨subtemplate⟩ is a ⟨template⟩ followed by zero or more instances of ⟨ellipsis⟩.

⟨Custom ellipsis clause⟩, if present, is an instance of custom-ellipsis
(section 4.5); ⟨ellipsis⟩ within a ⟨template⟩ refers to the auxiliary syntax keyword
... unless overridden by such a clause.

It is a syntax violation if the ⟨template⟩ contains circular references.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 5/14

Semantics: A syntax expression is similar to a quote-syntax expression, except
that the values of pattern variables appearing within ⟨template⟩ are inserted into
the ⟨template⟩ by copying the template, and the result of evaluating a syntax ex‐
pression is a syntax object which is only partially wrapped, as described below.

A subtemplate followed by an ellipsis expands into zero or more occurrences of the
subtemplate. Pattern variables that occur in subpatterns followed by one or more
ellipses may occur only in subtemplates that are followed by (at least) as many el‐
lipses. These pattern variables are replaced in the output by the input subforms
to which they are bound, distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associated subpattern, the input
form is replicated for the outermost excess ellipses as necessary. [Editorial note: Can

the meaning of ‘replicated for the outermost excess ellipses’ be made clearer?] The subtem‐
plate must contain at least one pattern variable from a subpattern followed by an
ellipsis, and for at least one such pattern variable, the subtemplate must be fol‐
lowed by exactly as many ellipses as the subpattern in which the pattern variable
appears; otherwise, it is a syntax violation.

A template of the form (⟨ellipsis⟩ ⟨template⟩) is equivalent to ⟨template⟩, except
that the effect of the ellipsis within the template is suppressed and it is treated
like any other ordinary identifier. In particular, the template (⟨ellipsis⟩
⟨ellipsis⟩) produces a single ellipsis. This allows macro uses to expand into forms
containing ellipses.

The result of evaluating a syntax expression is a copy of the ⟨template⟩ which is
wrapped or unwrapped according to the following rules.

The copy of a template which is a proper or improper list consists of un‐
wrapped pairs as far as the rightmost subtemplate which contains a pattern
variable. The cars of the pairs in the copy of the list are wrapped if they
would be wrapped by applying these rules to the cars in the subtemplates re‐
cursively. If the last subtemplate in a proper list contains a pattern variable,
then all pairs which form part of the list and the empty list in the final cdr
are unwrapped. If the template is an improper list and the final cdr is a pat‐
tern variable, then all pairs which form part of the improper list are un‐

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 6/14

wrapped and the final cdr is replaced by the value of the pattern variable in
the copy.

The copy of a template which is a vector is unwrapped if any of its subtem‐
plates contains at least one pattern variable.

The copy of any other template may be wrapped.

The values of the pattern variables are not copied when substituted into the tem‐
plate, and are thus wrapped or unwrapped to the same degree as when they were
bound. Other datums and identifiers that are not pattern variables or ellipses are
copied directly into the output, maintaining the contextual information associated
with them.

(quasisyntax ⟨quasi-template⟩) syntax
#`⟨quasi-template⟩ syntax
(quasisyntax ⟨custom ellipsis clause⟩
 ⟨quasi-template⟩)

syntax

#`⟨quasi-template⟩ syntax
(unsyntax ⟨expression⟩ ...) auxiliary syntax
#,⟨expression⟩ auxiliary syntax
(unsyntax-splicing ⟨expression⟩ ...) auxiliary syntax
#,@⟨expression⟩ auxiliary syntax
... auxiliary syntax

Syntax: (quasisyntax ⟨quasi-template⟩) can be abbreviated as #`⟨quasi-
template⟩, (unsyntax ⟨expression⟩) as #,⟨expression⟩, and (unsyntax-splicing
⟨expression⟩) as #,@⟨expression⟩. The notations are equivalent in all respects.

A ⟨quasi-template⟩ is either a ⟨template⟩, an instance of quasisyntax, unsyntax,
or unsyntax-splicing, or a list or vector containing further ⟨quasi-template⟩s.
Uses of unsyntax and unsyntax-splicing are valid only within ⟨quasi-template⟩
s.

⟨Custom ellipsis clause⟩, if present, is an instance of custom-ellipsis
(section 4.5); ⟨ellipsis⟩ within a ⟨template⟩ refers to the auxiliary syntax keyword

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 7/14

... unless overridden by such a clause.

The behaviour is undefined if the ⟨quasi-template⟩ contains circular references
outside of a context within an ⟨expression⟩ where they are allowed.

Semantics: The quasisyntax form is similar to syntax, but it allows parts of its
template to be evaluated, in a manner similar to the operation of quasiquote.
Unsyntax and unsyntax-splicing are the quasisyntax analogues of unquote and
unquote-splicing.

Rationale: While unquote and unquote-splicing could be re-used in quasisyntax for the

purpose of escaping out of the quoted environment, that would make generating macro out‐

put including a quasiquote expression unnecessarily tricky.

Within the ⟨quasi-template⟩, the ⟨expression⟩s of unsyntax and unsyntax-
splicing forms are evaluated; everything else is treated as ordinary template
material, as with syntax. The value of each unsyntax subform is inserted into the
output in place of the unsyntax form, while the value of each unsyntax-splicing
subform is spliced into the surrounding list or vector structure.

A quasisyntax expression may be nested, with each quasisyntax introducing a
new level of syntax quotation and each unsyntax or unsyntax-splicing taking
away a level of syntax quotation. An expression nested within 𝑛 quasisyntax ex‐
pressions must be within 𝑛 unsyntax or unsyntax-splicing expressions to be
evaluated.

All uses of unsyntax-splicing, and uses of unsyntax or unsyntax-splicing with
zero or more than one subform, are valid only within lists or vectors. Each use of
unsyntax or unsyntax-splicing with zero subforms results in no elements being
inserted into the list or vector: the unsyntax or unsyntax-splicing is treated as
if it were not there. Each use of unsyntax or unsyntax-splicing with more than
one subform is equivalent to the same number of individual unsyntax or
unsyntax-splicing forms, each with one of the subforms, in the same order.

Rationale: Uses of unsyntax and unsyntax-splicing with zero or more than one subform en‐

able certain idioms, such as #,@#,@. This has the effect of a doubly indirect splicing when

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 8/14

used within a doubly nested and doubly evaluated quasisyntax expression.

4.4. Binding other pattern variables within procedural
macros

(with-syntax ((⟨pattern⟩ ⟨expression⟩) ...)
 ⟨body⟩)

syntax

(with-syntax ⟨custom ellipsis clause⟩
 ((⟨pattern⟩ ⟨expression⟩) ...)
 ⟨body⟩)

syntax

The with-syntax form is the fundamental pattern variable binding form.

Syntax: Each ⟨pattern⟩ is identical in form to a syntax-case pattern.

⟨Custom ellipsis clause⟩, if present, is an instance of custom-ellipsis
(section 4.5); ⟨ellipsis⟩ within a ⟨pattern⟩ refers to the auxiliary syntax keyword
... unless overridden by such a clause.

Semantics: The value of each ⟨expression⟩ is computed and destructured accord‐
ing to the corresponding ⟨pattern⟩, and pattern variables within the ⟨pattern⟩ are
bound as if by syntax-case to the corresponding portions of the value within
⟨body⟩. It is a syntax violation if the result of evaluating an ⟨expression⟩ does not
match the corresponding ⟨pattern⟩.

Implementation:

(define-syntax with-syntax

 (lambda (stx)

 (syntax-case stx ()

 ((_ ((pattern expression) ...) body_0 body_1 ...)

 #'(syntax-case (list expression ...) ()

 ((pattern ...) (let () body_0 body_1 ...)))))))

4.5. Writing macros which generate other macros

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 9/14

(custom-ellipsis ⟨custom ellipsis⟩) auxiliary syntax

Syntax: ⟨Custom ellipsis⟩ must be an identifier.

Semantics: When a custom-ellipsis form is the first subform of a syntax-case,
syntax, quasisyntax, or with-syntax form, instances of ⟨ellipsis⟩ within the syn‐
tax of the ⟨pattern⟩, ⟨template⟩, or ⟨quasi-template⟩ of the respective form refer
not to the auxiliary syntax keyword ..., but to any identifier which is bound-
identifier=? to the ⟨custom ellipsis⟩ identifier.

4.6. Examples

Many simpler macros can be written using syntax-rules (see section 5) and triv‐
ially converted into syntax-case. This is useful, for example, when changing code
by using syntax-case to add additional functionality or error checking to a macro
whose original definition was in syntax-rules. The following example shows how
the swap! example of syntax-rules (section 5) can first be rewritten to use
syntax-case.

(define-syntax swap!

 (syntax-rules ()

 ((_ a b)

 (let ((temp a))

 (set! a b)

 (set! b temp)))))

≡ (define-syntax swap!

 (lambda (stx)

 (syntax-case stx ()

 ((_ a b)

 #'(let ((temp a))

 (set! a b)

 (set! b temp))))))

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 10/14

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html#syntax-rules-system
https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html#syntax-rules-system

The definition can then be improved using a fender clause to improve error report‐
ing in the case that either of the arguments to swap! is not an identifier. With the
above definition, (swap! (car x) (car y)) would result in a syntax violation be‐
ing signalled which claims that set! had been used incorrectly, even though there
is no set! explicitly used in the code.

(define-syntax swap!

 (lambda (stx)

 (syntax-case stx ()

 ((_ a b)

 (and (identifier? #'a)

 (identifier? #'b))

 #'(let ((temp a))

 (set! a b)

 (set! b temp))))))

With this definition, the syntax violation signalled by (swap! (car x) (car y))
will correctly report that swap! was used incorrectly.

The following example also shows how syntax-case can be used to improve error
reporting from macros by writing explicit error checking code. It defines a variant
of case which checks that all datums in a clause belong to types that can portably
be used in case: that is, their behaviour under eqv? never depends on their loca‐
tion in the store, which for other types is dependent on the Scheme implementa‐
tion. This kind of error checking is not possible in syntax-rules, which cannot in
general detect the type of any subform as a datum. (This version of case also does
not provide an else clause, instead signalling an error if no specific clause
matches.)

(define-syntax my-case

 (let ((eqv-undefined?

 (lambda (x-stx)

 (let ((x (syntax->datum x-stx)))

 (not (or (boolean? x) (symbol? x) (number? x)

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 11/14

 (char? x) (null? x)))))))

 (lambda (stx)

 (syntax-case stx ()

 ((_ key ((datum ...) expr_0 expr_1 ...) ...)

 (cond ((find eqv-undefined? #'(datum))

 => (lambda (bad-datum)

 (syntax-violation

 'my-case

 "use of datum in my-case is not portable"

 stx bad-datum)))

 (else

 #'(case key

 ((datum ...) expr_0 expr_1 ...) ...

 (else

 (error "key did not match any my-case datum"

 key))))))))))

Macros written using syntax-case can also bind an implicit identifier, which can‐
not be done with syntax-rules. The with-return example from section 3.2 can
be reformulated in terms of syntax-case as follows. The two definitions are
equivalent except that the first one uses quasisyntax and the second with-
syntax.

(define-syntax with-return

 (syntax-case stx ()

 ((k body_0 body_1 ...)

 (let ((return-id (datum->syntax #'k 'return)))

 #`(call-with-current-continuation

 (lambda (#,return-id)

 body_0 body_1 ...))))))

(define-syntax with-return

 (syntax-case stx ()

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 12/14

https://r7rs.org/large/fascicles/macro/1/syntax-objects.html#wrapped-syntax-objects

 ((k body_0 body_1 ...)

 (with-syntax ((return (datum->syntax #'k 'return)))

 #'(call-with-current-continuation

 (lambda (return)

 body_0 body_1 ...))))))

Syntax-case can also be used in the definition of identifier macros. The used-as
example from section 2.4 can be reformulated in terms of syntax-case as follows.

(define-syntax used-as

 (make-variable-transformer

 (lambda (stx)

 (syntax-case stx (set!)

 (id

 (identifier? #'id)

 #'(quote reference))

 ((set! _ value)

 #'(quote (assignment value)))

 ((_ . operands)

 #'(quote (combination . operands)))))))

Identifier macros written using syntax-case can be used to optimize expensive
procedure calls at expand time, while still providing the functionality of a first-
class procedure. The following wrapper around concatenate turns uses into the
more efficient append-map when its argument is known to be a call to the map
procedure.

(define-syntax fast-concatenate

 (lambda (stx)

 (syntax-case stx (map)

 ((_ (map f ls_0 ls_1 ...))

 #'(append-map f ls_0 ls_1 ...))

 ((_ ls)

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 13/14

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#variable-transformers

 #'(concatenate ls))

 (id

 (identifier? #'id)

 #'concatenate))))

(fast-concatenate (map make-list '(1 2 3) '(a b c)))

⇒ (a b b c c c)

(fast-concatenate (list '(bh b p) '(dh d t)))

⇒ (bh b p dh d t)

(apply fast-concatenate '(((gh g k) (g*h g* k*))))

⇒ (gh g k g*h g* k*)

Users should note, however, that many implementations of Scheme include so‐
phisticated compilers which are able to recognize procedure calls which can be
safely evaluated before run time, and which can usually optimize such cases more
effectively than any macro definition. Explicit use of macros like this should usu‐
ally be limited to instances where optimization cannot be done by a compiler. This
typically includes cases in which the procedure uses side effects within its defini‐
tion, or (as in the above example) where an optimization is possible when some in‐
formation about arguments’ values is known at expand time, but the values are
otherwise not known until run time. Note also that the above example does not
prevent the compiler from later additionally performing this optimization on the
resulting append-map call when all its arguments are known at compile time.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-case-system.html 14/14

THE MACROLOGICAL FASCICLE

CHAPTER 5

The syntax-rules system
The syntax-rules system can be used to write the simplest macros somewhat
more concisely than is possible in the syntax-case system, with which it is
closely related. A macro implemented in the syntax-rules system cannot per‐
form arbitrary Scheme evaluation during its expansion. It also has no means of
identifier capture, though this can sometimes be simulated using syntax parame‐
ters (see section 2.3).

(syntax-rules (⟨pattern literal⟩ ...)
 ⟨syntax rule⟩ ...)

syntax

(syntax-rules ⟨custom ellipsis⟩ (⟨pattern literal⟩ ...)
 ⟨syntax rule⟩ ...)

syntax

_ auxiliary syntax
... auxiliary syntax

Syntax: Each ⟨pattern literal⟩ must be an identifier. If a ⟨custom ellipsis⟩ is pro‐
vided, it must be an identifier. Each ⟨syntax rule⟩ has the form

(⟨rule pattern⟩ ⟨template⟩)

A ⟨template⟩ has the same form as in the definition of syntax. A ⟨rule pattern⟩
must have one of the following four forms:

(⟨identifier⟩ ⟨pattern⟩ ...)

(⟨identifier⟩ ⟨pattern⟩ ⟨pattern⟩)

(⟨identifier⟩ ⟨pattern⟩ ... ⟨pattern⟩ ⟨ellipsis⟩ ⟨pattern⟩ ...)

(⟨identifier⟩ ⟨pattern⟩ ... ⟨pattern⟩ ⟨ellipsis⟩ ⟨pattern⟩ ⟨pattern⟩)

⟨Pattern⟩ has the same form as in the definition of syntax-case.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 1/10

https://r7rs.org/large/fascicles/macro/1/syntax-transformation.html#syntax-parameters

⟨Custom ellipsis⟩, if provided, must be an identifier. Within a ⟨rule pattern⟩, ⟨pat‐
tern⟩, and ⟨template⟩, ⟨ellipsis⟩ refers to an identifier which is bound-
identifier=? to this custom ellipsis identifier, if it is provided, or to the auxiliary
syntax keyword ... otherwise.

Semantics: An instance of syntax-rules evaluates to a transformer procedure
which operates according to a sequence of hygienic rewrite rules. A use of a macro
whose keyword is associated with a transformer specified by syntax-rules is
matched against the patterns contained in the ⟨syntax rule⟩s, beginning with the
leftmost ⟨syntax rule⟩. When a match is found, the macro use is transcribed hy‐
gienically according to the template. It is a syntax violation when no match is
found.

The ⟨identifier⟩ at the beginning of a ⟨rule pattern⟩ is not involved in the match‐
ing and is considered neither a pattern variable nor a literal identifier. Thus,
⟨rule pattern⟩s are like syntax-case patterns, but are restricted to matching
uses of macros which are not identifier macros.

Excluding the initial identifier, which is treated as if it were the auxiliary syntax
keyword _, a macro use defined using syntax-rules is transcribed according to
the template of the matching ⟨syntax rule⟩ as if the pattern had been matched us‐
ing syntax-case with the same given list of ⟨pattern literal⟩s, and a syntax ex‐
pression containing the ⟨template⟩ were the only content of that syntax-case
clause’s output expression.

Examples:

The following macro destructively swaps the values associated with the identifiers
it is given.

(define-syntax swap!

 (syntax-rules ()

 ((_ a b)

 (let ((temp a))

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 2/10

 (set! a b)

 (set! b temp)))))

Because hygiene is automatically maintained, the use of temp as an identifier in‐
ternal to the expansion does not conflict with any existing binding called temp
which exists in the place where the macro is used:

(define temp 37)

(define fever-temp 38)

(swap! fever-temp temp)

(values temp fever-temp)

⇒ 38 37

Further, local redefinitions or re-bindings of let or set! at the place the macro is
used do not affect the meaning of the macro expansion:

(let-syntax

 ((let (erroneous-syntax "let is not allowed here")))

 (swap! x y))

⇒ swaps the values of x and y without raising an error

Because the identifiers introduced by each macro transcription step receive a
unique time-stamp, a recursively-expanding syntax-rules macro can generate an
arbitrary number of distinct identifiers. The following example uses this together
with the guaranteed evaluation order of let* to define a macro which expands
into a normal Scheme procedure call, but guarantees that the procedure and its
operands will be evaluated in left-to-right order.

(define-syntax call*

 (syntax-rules ()

 ((_ args ...)

 (call*-aux (args ...) ()))))

(define-syntax call*-aux

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 3/10

 (syntax-rules ()

 ((_ (expr . more-exprs) (exprs-w/gen-ids ...))

 (call*-aux more-exprs (exprs-w/gen-ids ... (gen-id expr))))

 ((_ () ((gen-id expr) ...))

 (let* ((gen-id expr) ...)

 (gen-id ...)))))

If the body of the let expression in the following example were simply (cons
(read source) (read source)), an implementation of Scheme would be allowed
to return ((then this) . this-first). Using this call* macro guarantees the
intended result.

(let ((source (open-input-string "this-first (then this)")))

 (call* cons (read source)

 (read source)))

⇒ (this-first then this)

Implementation:

(define-syntax syntax-rules

 (lambda (x)

 (syntax-case x ()

 ((_ ell (lit ...) ((k . p) t) ...)

 (and (identifier? #'ell)

 (every identifier? #'(lit ... k ...)))

 #'(lambda (x)

 (syntax-case (custom-ellipsis ell) x (lit ...)

 ((_ . p) (syntax (custom-ellipsis ell) t)) ...)))

 ((_ (lit ...) ((k . p) t) ...)

 (every identifier? #'(lit ... k ...))

 #'(lambda (x)

 (syntax-case x (lit ...)

 ((_ . p) #'t) ...))))))

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 4/10

Note: The syntax-rules of this report is a compatible extension to that of the small lan‐

guage, and the (scheme base) library must export the same binding [Editorial note: as which‐

ever large language library this ends up in]. Compared to the small language version, the ability

to match macro uses of the form (⟨keyword⟩ ⟨datum⟩ ⟨datum⟩), to use multiple el‐

lipses after a subtemplate, and to use ellipsized subtemplates which include pattern vari‐

ables with mismatching levels of ellipsis nesting in the pattern have been added.

Compared to the R6RS version of syntax-rules, the ability to rename the ellipsis and to use

the ellipsis and underscore as literals have been added.

Compared to the R5RS version of syntax-rules, the pattern language has been extended to

allow further patterns after an ⟨ellipsis⟩, and the special identifier _ to match any input form

without creating a pattern variable and the ability to rename the ellipsis have been added.

As in the small language version, the R5RS version also did not allow macro uses of the form

(⟨keyword⟩ ⟨datum⟩ ⟨datum⟩), nor multiple ellipses after a subtemplate, nor ellip‐

sized subtemplates with pattern variables at different levels of nesting in the pattern.

(identifier-syntax ⟨template⟩) syntax
(identifier-syntax

 (⟨identifier ⟩ ⟨template ⟩)
 ((set! ⟨identifier ⟩ ⟨pattern⟩) ⟨template ⟩))

syntax

set! auxiliary syntax

Identifier-syntax is a purely template-based form for creating transformers for
identifier macros, in the same way that syntax-rules is a purely template-based
form for creating transformers for macros that are not identifier macros.

Syntax: The ⟨pattern⟩ must be as for syntax-case, and the ⟨template⟩s must be
as for syntax and syntax-rules.

Note: The set! referred to here as auxiliary syntax has the same binding as the set! key‐

word used as non-auxiliary syntax.

Semantics: Identifier-syntax evaluates to a macro transformer.

In the first form of identifier-syntax, every instance of the syntax keyword
bound to the returned transformer is replaced by the ⟨template⟩ within the scope

1 1

2 2

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 5/10

of the keyword. It is a syntax violation to use set! on syntax keywords associated
with transformers created with this form of identifier-syntax.

The second, more general, form of identifier-syntax permits the transformer to
determine what happens when set! is used. In this case, uses of the syntax key‐
word itself are replaced by ⟨template ⟩, and uses of set! with the syntax keyword
are replaced by ⟨template ⟩.

Pattern variables within the ⟨template⟩s are substituted as in syntax-rules; for
this purpose, the ⟨identifier⟩s and ⟨pattern⟩ are treated as patterns matched
against the relevant parts of the macro uses.

Note: Use of ⟨pattern⟩s more complex than a single pattern variable in the set! clause of the

second form of identifier-syntax is inadvisable because the resulting macros will likely

surprise users when they cannot be used to set! the identifier to the value of another, exist‐

ing variable.

Todo: Should the ⟨pattern⟩ be restricted to one identifier? [Editorial note: Issue

142.]

Todo: Should identifier-syntax support custom-ellipsis or otherwise el‐
lipsis renaming?

Example: Identifier-syntax could be used to define constants which cannot be
mutated anywhere.

(define-syntax define-constant

 (syntax-rules ()

 ((_ name value)

 (begin

 (define constant-value value)

 (define-syntax name (identifier-syntax constant-value))))))

1

2

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 6/10

Using define-constant in the manner of define creates an identifier binding
which cannot be set! in any context.

(define-constant π 3.1415927)

(set! π #e3.2)

⇒ syntax violation

Conversely, another possible use of identifier-syntax is to create the illusion
that a library exports a variable which can be mutated.

(library (magic-library)

 (export magic-variable)

 (import #;(todo))

 (define magic-variable-contents (cons 'initial-value '()))

 (define-syntax magic-variable

 (identifier-syntax

 (_ (car magic-variable-contents))

 ((set! _ val) (set-car! magic-variable-contents val)))))

Programs and libraries which import (magic-library) can seemingly see and set
the value of an identifier called magic-variable. Its value is always the same in
all contexts in which it is imported. In reality, the car of a pair is holding the
value, rather than any binding directly.

Implementation:

(define-syntax identifier-syntax

 (lambda (x)

 (syntax-case x (set!)

 ((_ e)

 #'(lambda (x)

 (syntax-case x ()

 (id (identifier? #'id) #'e)

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 7/10

 ((_ x (... ...)) #'(e x (... ...))))))

 ((_ (id exp1) ((set! var val) exp2))

 (and (identifier? #'id) (identifier? #'var))

 #'(make-variable-transformer

 (lambda (x)

 (syntax-case x (set!)

 ((set! var val) #'exp2]

 ((id x (... ...)) #'(exp1 x (... ...)))

 (id (identifier? #'id) #'exp1))))))))

5.1. Indicating erroneous macro uses

(syntax-error ⟨message⟩ ⟨irritant⟩ ...) syntax

Syntax: ⟨Message⟩ must be a string literal. The ⟨irritant⟩s may be any Scheme
datums.

Semantics: Any attempt to expand a syntax-error form results in a syntax viola‐
tion being signalled. The condition value raised is a compound condition with at
least three components: a &syntax-violation condition whose form and subform
fields are unspecified, but which should both be set to #f if no useful value can be
provided; a &message condition whose field is set to the given ⟨message⟩; and an
&irritants condition whose field is set to a list of the ⟨irritant⟩s as syntax ob‐
jects. An implementation may also include additional components within the com‐
pound condition.

This can be used as a syntax-rules ⟨template⟩ for a ⟨rule pattern⟩ that is an in‐
valid use of the macro, which can provide more descriptive error messages. An im‐
plementation of syntax-rules can recognize when an instance of syntax-error
is the only content of a ⟨template⟩ and use this to provide more helpful informa‐
tion for the fields of the &syntax-violation condition component.

Example:

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 8/10

(define-syntax simple-let

 (syntax-rules ()

 ((_ ((x . y) val) body1 body2 ...)

 (syntax-error "expected an identifier" (x . y)))

 ((_ (name val) body1 body2 ...)

 ((lambda (name) body1 body2 ...) val))))

Implementation:

(define-syntax syntax-error

 (lambda (stx)

 (syntax-case stx ()

 ((_ message irritant ...)

 (string? (syntax->datum #'message))

 (raise

 (condition

 (make-syntax-violation #f #f)

 (make-message-condition (syntax->datum #'message))

 (make-irritants-condition #'(irritant ...))))))))

(erroneous-syntax) syntax
(erroneous-syntax ⟨message⟩) syntax

Syntax: ⟨Message⟩, if given, must be a string literal.

Semantics: An instance of erroneous-syntax evaluates to a macro transformer
which always signals a syntax violation when invoked. If a ⟨message⟩ is provided,
it will become the value of the message field of the syntax violation; if no message
is provided, a default message (which may vary depending on the exact form of
the macro use) should indicate that the keyword cannot be used in this context.

This can be used to define auxiliary syntax keywords which can never be correct
macro uses on their own, as well as syntax parameters with no meaningful de‐
fault transformers, and keys for identifier properties.

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 9/10

Examples: An implementation of Scheme might contain this somewhere for use by
the cond and case forms:

(define-syntax => (erroneous-syntax))

(define-syntax else (erroneous-syntax))

A keyword used only as a key for identifier properties might be defined thus:

(define-syntax documentation

 (erroneous-syntax "The documentation keyword is used only as an \

identifier property key"))

10/6/24, 1:11 PM The Macrological Fascicle: The system

https://r7rs.org/large/fascicles/macro/1/syntax-rules-system.html 10/10

THE MACROLOGICAL FASCICLE

APPENDIX A

Other macro systems
This section of the report is non-normative and aims to demonstrate how macros
written with some other Scheme macro systems can be accommodated by a macro
system based on syntax objects.

A.1. Unhygienic macros

Traditional Lisp macros offer no protection against accidental identifier capture
and do not ensure that free variables in the expansion have the same references
as at the point where the macro was defined. The argument to this lisp-
transformer form is a procedure which receives the macro use as a completely
unwrapped datum.

Implementation:

(define (lisp-transformer transformer)

 (lambda (stx)

 (syntax-case stx ()

 ((use-ctx . rest)

 (datum->syntax #'use-ctx

 (transformer

 (syntax->datum stx)))))))

A.2. Explicit renaming macros

The explicit renaming system was introduced by Clinger (1991) as an alternative
means of implementing syntax-rules. As a low-level macro system, its weak‐
nesses are its relative verbosity when used to implement a fully hygienic macro,
and its inability to control the context of identifier capture, meaning it cannot
comply with the requirements on introducing capturing references in section 1.1.
The version of the er-macro-transformer form defined here can avoid this prob‐

10/6/24, 1:13 PM The Macrological Fascicle: Other macro systems

https://r7rs.org/large/fascicles/macro/1/other-macro-systems.html 1/4

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-Clinger91
https://r7rs.org/large/fascicles/macro/1/macros-and-hygiene.html#hygiene-definition

lem by allowing selective use of the datum->syntax form to capture identifiers, in‐
stead of using symbols as in the original definition of er-macro-transformer.

A small number of explicit renaming macros may require adjustment to work cor‐
rectly under this version of er-macro-transformer. Some adjustment may be re‐
quired because typical explicit renaming macros use eq?, eqv?, or symbol=? to
check whether binding one identifier would shadow another — in other words, to
provide the functionality of bound-identifier=?. This use was not defined in
Clinger’s original paper and is a later addition to the vernacular of explicit re‐
naming systems.

In the syntax-case system, two identifiers with this property are not typically
the same in the sense of eq? or eqv?. If the macro implementation uses symbol=?
to perform this check, a domain error will occur on any such attempt to compare
identifiers; such macros already do not work on many implementations of explicit
renaming, however, where identifiers are wrapped in syntactic closures (Bawden
and Rees 1988, Hanson 1991). Likewise, using symbol? to check whether part of a
macro’s input expression is an identifier will not work in this implementation, but
such macros were also already broken in explicit renaming systems implemented
on top of syntactic closures. In fact, there is no way to do this which already works
across different explicit renaming-based expanders.

As can be seen, this implementation’s weaknesses mainly find their ultimate root
cause in the under-specified nature of the explicit renaming system itself. Another
weakness is that if a use of a macro defined with this implementation contains a
circular literal value, the unwrap procedure will diverge.

Implementation:

(define (unwrap stx)

 (syntax-case stx ()

 ((a . b) (cons (unwrap #'a) (unwrap #'b)))

 (#(a ...) (vector-map unwrap #'#(a ...)))

 (id (identifier? #'id) #'id)

 (_ (syntax->datum stx))))

10/6/24, 1:13 PM The Macrological Fascicle: Other macro systems

https://r7rs.org/large/fascicles/macro/1/other-macro-systems.html 2/4

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-BawdenAndRees88
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-BawdenAndRees88
https://r7rs.org/large/fascicles/macro/1/_references.html#ref-Hanson91

(define (rewrap ctx expr)

 (let rewrap* ((e e))

 (cond

 ((pair? e) (cons (rewrap* (car e)) (rewrap* (cdr e))))

 ((vector? e) (vector-map rewrap* e))

 ((identifier? e) e)

 (else (datum->syntax ctx e)))))

(define (make-compare ctx)

 (lambda (x y)

 (free-identifier=? (rewrap ctx x) (rewrap ctx y))))

(define (make-rename ctx)

 (lambda (x)

 (datum->syntax ctx x)))

(define-syntax er-macro-transformer

 (lambda (stx)

 (syntax-case stx ()

 ((k proc-expr)

 #'(let ((proc proc-expr))

 (lambda (stx)

 (syntax-case stx ()

 ((m . _)

 (rewrap #'m

 (proc (unwrap stx)

 (make-rename #'k)

 (make-compare #'m)))))))))))

A.3. Implicit renaming macros

10/6/24, 1:13 PM The Macrological Fascicle: Other macro systems

https://r7rs.org/large/fascicles/macro/1/other-macro-systems.html 3/4

Implicit renaming macros are a variant of explicit renaming macros with one dif‐
ference. Instead of providing a rename procedure for referring to or inserting iden‐
tifiers hygienically, and taking bare symbols in the output as the names of identi‐
fiers to be captured in the context of the macro keyword, the situation is inverted:
bare symbols in the output are renamed hygienically and an inject procedure is
used to capture identifiers in the context of the keyword at the macro use site. As
above, in this implementation datum->syntax can be used to more safely perform
this capture in contexts other than that of the macro use keyword.

The same caveats around the assumption that symbols are used to represent
identifiers mentioned above in the section about explicit renaming macros apply
here. The unwrap, rewrap, make-compare, and make-rename procedures are the
same as for the explicit renaming implementation.

Implementation:

(define-syntax ir-macro-transformer

 (lambda (stx)

 (syntax-case stx ()

 ((k proc-expr)

 #'(let ((proc proc-expr))

 (lambda (stx)

 (syntax-case stx ()

 ((m . _)

 (rewrap #'k

 (proc (unwrap stx)

 (make-rename #'m)

 (make-compare #'m)))))))))))

10/6/24, 1:13 PM The Macrological Fascicle: Other macro systems

https://r7rs.org/large/fascicles/macro/1/other-macro-systems.html 4/4

THE MACROLOGICAL FASCICLE

Acknowledgements
The following people responded to the Yellow Ballot:

Alex Shinn
Amirouche Boubekki
Artem Chernyak
Arthur A. Gleckler
Chris Vine
Daphne Preston-Kendal
Dimitris Vyzovitis
Dmitry Moskowski
Duy Nguyen
Emmanuel Medernach
Gabriel B. Sant’Anna
Graham Watt
Jaime Fournier
Jani Juhani Sinervo
Jeremy Steward
John Cowan
Justin Ethier
Linas Vepstas
‘Lulu’
Marc Nieper-Wißkirchen
Marc-André Bélanger
Mark Hughes
Martin Rodgers
Nicholas Carlson
Ondřej Majerech
Ross Angle
Roy Mu
Sam Phillips
Shiro Kawai

10/6/24, 1:13 PM The Macrological Fascicle: Acknowledgements

https://r7rs.org/large/fascicles/macro/1/acknowledgements.html 1/2

Takashi Kato
Taylan Kammer
Tim Van den Langenbergh
Vijay Marupudi
Vincent Manis
Vladimir Nikishkin
Wolfgang Corcoran-Mathe

Syntax parameters were introduced by Barzilay, Culpepper and Flatt (2011).

Marc Nieper-Wißkirchen contributed the sample implementation of explicit re‐
naming in terms of syntax objects.

The following sources were also used:

The Revised , Revised , and Revised (small language) Reports on Scheme
The Guile manual
The Racket Reference
The Chez Scheme 9 User Guide

4 6 7

10/6/24, 1:13 PM The Macrological Fascicle: Acknowledgements

https://r7rs.org/large/fascicles/macro/1/acknowledgements.html 2/2

https://r7rs.org/large/fascicles/macro/1/_references.html#ref-BarzilayEtAl11

THE MACROLOGICAL FASCICLE

Barendregt, Henk P., ‘Introduction to the Lambda Calculus’, Nieuw Archief Voor
Wiskunde, 4/2 (1984), 337–72

Barzilay, Eli, Culpepper, Ryan, and Flatt, Matthew, ‘Keeping It Clean with
Syntax Parameters’, 2011
<http://www.schemeworkshop.org/2011/papers/Barzilay2011.pdf> [accessed 30
August 2023]

Bawden, Alan, and Rees, Jonathan, ‘Syntactic Closures’, in Proceedings of the
1988 ACM Conference on LISP and Functional Programming, LFP ’88 (New
York, NY, USA, 1988), 86–95 <https://doi.org/10.1145/62678.62687>

Bradner, Scott O., ‘Key words for use in RFCs to Indicate Requirement Levels’,
Request for Comments (1997) <https://www.rfc-editor.org/info/rfc2119>

Clinger, William, ‘Hygienic Macros Through Explicit Renaming’, SIGPLAN Lisp
Pointers, 4/4 (1991), 25–28 <https://doi.org/10.1145/1317265.1317269>

Clinger, William D., and Wand, Mitchell, ‘Hygienic Macro Technology’,
Proceedings of the ACM on Programming Languages, 4/HOPL (2020)
<https://doi.org/10.1145/3386330>

Clinger, William, and Rees, Jonathan, ‘Macros That Work’, in Proceedings of the
18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’91 (New York, NY, USA, 1991), 155–62
<https://doi.org/10.1145/99583.99607>

Dybvig, R. Kent, Hieb, Robert, and Bruggeman, Carl, ‘Syntactic Abstraction in
Scheme’, Lisp and Symbolic Computation, 5/4 (1992), 295–326
<https://doi.org/10.1007/BF01806308>

Flatt, Matthew, ‘Binding as Sets of Scopes’, in Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16 (New York, NY, USA, 2016), 705–17
<https://doi.org/10.1145/2837614.2837620>

Hanson, Chris, ‘A Syntactic Closures Macro Facility’, SIGPLAN Lisp Pointers, 4/4
(1991), 9–16 <https://doi.org/10.1145/1317265.1317267>

Kohlbecker, Eugene E., Jr., ‘Syntactic Extensions in the Programming Language
LISP’ (unpublished PhD thesis, Indiana University, 1986)

10/6/24, 1:13 PM The Macrological Fascicle: References

https://r7rs.org/large/fascicles/macro/1/_references.html 1/2

http://www.schemeworkshop.org/2011/papers/Barzilay2011.pdf
https://doi.org/10.1145/62678.62687
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.1145/1317265.1317269
https://doi.org/10.1145/3386330
https://doi.org/10.1145/99583.99607
https://doi.org/10.1007/BF01806308
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/1317265.1317267

Kohlbecker, Eugene E., Jr., Friedman, Daniel P., Felleisen, Matthias, and Duba,
Bruce, ‘Hygienic Macro Expansion’, in Proceedings of the 1986 ACM Conference
on LISP and Functional Programming, LFP ’86 (New York, NY, USA, 1986),
151–61 <https://doi.org/10.1145/319838.319859>

van Tonder, André, ‘R6RS Libraries and Macros’, 2006
<http://www.het.brown.edu/people/andre/macros/index.html> [accessed 28
September 2009]

10/6/24, 1:13 PM The Macrological Fascicle: References

https://r7rs.org/large/fascicles/macro/1/_references.html 2/2

https://doi.org/10.1145/319838.319859
http://www.het.brown.edu/people/andre/macros/index.html

